Asymmetrical dynamics of voltage spread in retinal horizontal cell networks.

نویسندگان

  • J Benda
  • R Bock
  • P Rujan
  • J Ammermüller
چکیده

Lateral voltage spread in electrically coupled retinal horizontal cell networks is the substrate of center-surround antagonism in bipolar and ganglion cells. We studied its spatial and temporal properties in more detail in turtle L1 horizontal cells by using a contrast border as light stimulus. Experimental data were contrasted with expectations from a linear continuum model to specify the impact of nonlinearities. The assumptions for the diffusion term of the continuum model were justified by neurobiotin labeling. Measured voltage spread revealed two different length constants lambda+ and lambda0, under illuminated and nonilluminated regions of the retina, respectively, as predicted by the linear model. Length constants in the illuminated region showed strong temporal dynamics. For the initial phase of the horizontal cell responses lambda+ was larger than lambda0. This was also in accordance with the model. Right at the peak of the response, however, lambda+ dropped below lambda0 and did not change any more. It is this temporal reversal of asymmetry in voltage spread and not the decrease of lambda+ itself that is lacked by the linear model. The observed independence of the mean ratio lambda+/lambda0 from light intensity in both the peak and the plateau phases of horizontal cell responses contradicts the linear assumption, too. These two effects have to be addressed to local nonlinearities in the horizontal cell network like a negative feedback loop from photoreceptors and/or voltage-dependent conductances. Due to the failure of the linear model, firm conclusions about the membrane resistance and the coupling resistance of the horizontal cell network cannot be drawn from length constant measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of horizontal cell network architecture on signal spread in the turtle outer retina. experiments and simulations

In the Pseudemys turtle retina five functionally distinct, electrically coupled networks of horizontal cells distribute signals in the outer plexiform layer. These networks differ significantly in their architecture, as determined by intracellular labeling with Neurobiotin after physiological recording and identification. The density of H1 horizontal cells is highest, ranging around 1800 cells/...

متن کامل

Fuel Cell Voltage Control for Load Variations Using Neural Networks

In the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. One of the most common types of DG technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone Studies the dynamic behavior andstability of the power grid is of crucial importance. These studies need to know the exact mo...

متن کامل

Dopamine modulates in a differential fashion T- and L-type calcium currents in bass retinal horizontal cells

White bass (Roccus chrysops) retinal horizontal cells possess two types of voltage-activated calcium currents which have recently been characterized with regard to their voltage dependence and pharmacology (Sullivan, J., and E. M. Lasater. 1992. Journal of General Physiology. 99:85-107). A low voltage-activated transient current was identified which resembles the T-type calcium current describe...

متن کامل

اثر DVR بر بهبود کمبود و بیشبود ولتاژ سیستم توزیع در شرایط هارمونیکی (یادداشت فنی)

Today, with attention to increase in sensitive electrical equipments application in distribution networks and their susceptibility to the power quality deficiencies, the protection necessity of sensitive loads against undesirable effects of these disturbances are in focus. So, in this paper voltage sag deficiency and Dynamic Voltage Restorer (DVR) would be introduced as the most prevalent power...

متن کامل

THD Minimization of the Output Voltage for Asymmetrical 27-Level Inverter using GA and PSO Methods

Multilevel voltage source inverters have several advantages compare to traditional voltage source inverter. These inverters reduce cost, get better voltage waveform and decrease Total Harmonic Distortion (THD) by increasing the levels of output voltage. In this paper Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods are used to find the switching angles for achieving to the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Visual neuroscience

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2001